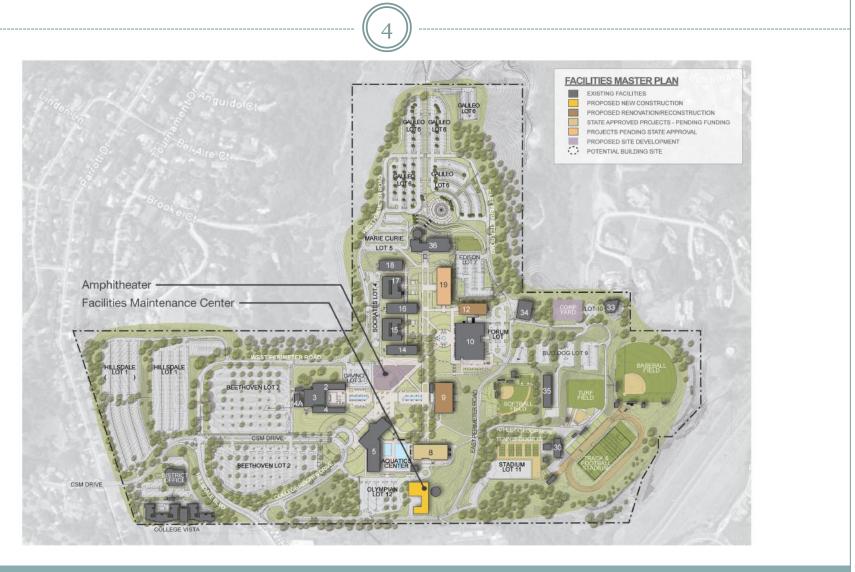
Design Build Institute of America (DBIA)

"DESIGN BUILD LESSONS LEARNED"

JOSÉ D. NUÑEZ, LEED AP VICE CHANCELLOR FACILITIES PLANNING, MAINTENANCE & OPERATIONS


SEPTEMBER 18, 2012

San Mateo County Community College District

- Three Campuses (1.4M GSF / 346 Acres)
 - Cañada College Redwood City 1968
 - o Skyline College San Bruno 1969
 - o College of San Mateo San Mateo 1963
 - District Office San Mateo 1978
- 25,000 Students / 1,000 Staff / Adjuncts
- \$900M Capital Improvement Program
 - Multiple Funding Sources
 - Multiple Delivery Methods

Cañada College Facilities Master Plan 2011 3 CAMPUS CIRCLE Alternative locations for Science, Allied Health, & Workforce Development Building FACILITIES MASTER PLAN EXISTING FACILITIES PROPOSED NEW CONSTRUCTION PROPOSED RENOVATION/RECONSTRUCTION STATE APPROVED PROJECTS - PENDING FUNDING PROJECTS PENDING STATE APPROVAL PROPOSED SITE DEVELOPMENT Parking Expansion (POTENTIAL BUILDING SITE North Quad Development WEST ENTRY DRIVE Alternative locations -for Multi-Use Field or Solar Array THE LOOP ROA WOODHILL DRIVE FARM HILL BOULEVARD

College of San Mateo Facilities Master Plan 2011

Skyline College Facilities Master Plan 2011

SMCCCD's Experience with Design Build: New/Modernization

- CAN Vista 60-unit Faculty & Staff Housing -\$13M
- CAN Gateways \$7.6
- CSM College Heights 44-unit Faculty & Staff Housing \$8M
- CSM CIP 2 (\$172.5)
 - CSM 5, Health & Wellness Building \$41M
 - CSM 10, College Center \$60.5M
 - CSM Site Work / Electrical Infrastructure/Chiller/Parking \$71M
- CSM 9,15,17 & 34, Hillsdale Parking (Hike Project) \$10M
- CSM 36, Science Building with Planetarium & Observatory \$19.5M
- SKY CIP 2 (\$57M)
 - SKY 4, Cosmetology, Administration & Wellness Center \$33M
 - SKY 11, Automotive Transmission Lab Building \$6M
 - SKY Site Work / Electrical Infrastructure/Parking \$18M
- SKY 6, Student & Community Center & SKY 7, Science Building \$21.5M
- DW Athletic Fields \$18M
- DW Energy Efficiency -\$18M

Why Design Build?

• To Owner

- Faster to market
- Increased value
- Know what they are getting for available dollars

• To Builder

- o Early involvement to allow for design and budget input
- Early project planning to encourage creative solutions
- Subjective contract award lowest final cost objective

• To Architect

- People we like working with mutual relationship
- Opportunity to learn with builder
- Design experience vs. project type deep experience
- Beneficial economics (if you're good at it)

Why Design Build?

One team with common goals

• Single Responsibility

- No finger pointing
- Eliminates legal triangle
- Continuity of team across entire project
- Increased collaboration
- Active client participation
- Enhanced open and honest communication
- Increased value

Why Design Build?

• Cost Control – Stipulated Sum

- **•** Fixed limit of construction costs
- Feedback for better design and construction documents

Better Technology

- Learn from the people who make and install building systems
- Designer participation in practical application
- Flexibility to get the most current technology
- Perfect Design Build Team
 - Knows design
 - Knows the builder

Project Specific

- What one persons knows is available to all
- Contractor isn't plotting for claims and change orders
- Communications, documentation & costs are transparent
- Compressed Schedule: move-in sooner
- Satisfying Relationship between Owner / Architect / Builder
- Unforeseen Conditions in Renovations: Flexibility & Quick Response
- Price Certainty

District Guidelines / Process

10

• The Design Build Road Map

- Selecting a Project for Design Build Delivery
- BOT Resolution
- CCCO Project Approval / Notification Process
- Bridging
- Public Notification
- Prequalification
- Request for Qualification (RFQ)
- Request for Proposal (RFP) Stipulated Sum Best Value
 - Confidential Meetings (x3)
 - × Site Surveys
- RFP Interviews
- Selection
- Stipend
- Award

Lessons Learned: Prequalification

11

• Who

- o General Contractor
- Architect(s) of Record
- Principal Engineer(s)
- Major Design Build Subcontractors

• Criteria

- Construction Experience
- Contractor's License
- Work History
- Litigation and Arbitration History
- Disqualification from Previous Projects
- Compliance with Statutory Requirements and Safety
- Prevailing Wage Requirements
- o Project Personnel
- o Insurance Requirements
- Bonding Information
- Financial Information

Lessons Learned: Bridging Process

12

Budget should be understood by ALL

Bridging Architect

- Educational Master Plan*
- Facilities Master Plan
- o Owner
- o User Group

Decision Making (Deliberate & Collegial)

- o Owner
- End User
- Contractor
- How Detailed?
 - o Concept vs. SD's vs. DD's
- Confidential Meetings (x3)

Lessons Learned: RFP Evaluation

13

• Assemble Review Team

• Administrators / Faculty / M&O / CM Firm

- Allow Sufficient Review Time
- Clearly Identify Evaluation Criteria
- Develop Scoring Matrix (Keep It Simple)
 - Price (Stipulated Sum)
 - × Alternates
 - × Exceptions
 - o Technical Expertise
 - o Life Cycle Costs
 - o Skilled Labor Force
 - o Acceptable Safety Record
 - o Architectural Aesthetics and Design Innovation
 - o Project Management Plan
 - Program Requirements
 - Logistics (Occupied Campus)

Proposal Evaluation Criteria

14

FACTORS		Maximum Points
1.	Price and Cost Management Plan*	20
2.	Technical Expertise	10
3.	Life Cycle Costs over 25 Years	10
4.	Skilled Labor Force Availability	10
5.	Acceptable Safety Record*	10
6.	Design Management Plan	10
7.	Construction Management Plan	10
8.	Schedule	10
9.	Legal and Other Program Requirements	5
10.	Risk Management Plan	5
	TOTAL (Maximu	ım) 100 points

Lessons Learned: College

15

- Program changes
- Fixed schedule
- Campus decision making
- Budget for know and unknown
- Unforeseen conditions
- Coordinate FF&E with DBE
- Accelerated occupancy
- Plan view vs. reality

Lessons Learned: Design Standards / Documentation

16

Design Standards

- Communications
- Materials
- Fixtures
- Hardware
- Color Palette
- Plant Species
- BMS Controls –
- Flooring, Etc.

• LEED

Commissioning

- o Design
- Construction
- Post Occupancy 12 Mos.

Documentation

- Design Build Contract
- o Division OO & O1
- o Outline Specifications
- Room Data Sheets
- Meeting Notes
 - × Distribution
- CM Software "IMPACT"
 - o RFIs
 - o Submittals
 - Meeting Notes
 - Change Orders

Lessons Learned: Schedule

• Ambitious vs. Conservative

- Fast-Track
- o Normal Schedule
- Academic Calendar
 - Start of Classes
 - Spring Break
 - o Finals
 - o Commencement
 - o Special Events

• <u>Owner / End User</u>Wild Card

- Added Scope
- Owner Requirements
 Pre-Turnover
 - o Surplus/Salvage Process
 - o Hazmat Removal
 - o Infrastructure As-Builts
 - × Not Reliable
 - × Physical Inspection
 - × X-Ray

Lessons Learned: DBE & DSA

18

• DSA Buy-In Approach

- Include District (Owner) participation
- Establish a contact person at DSA
- Schedule early and appropriate meetings
- Establish firm agreed upon DSA submittal dates
- Document meetings and agreed upon discussions with attendees
- Describe incremental or phase submittals & deliverables & obtain buy-in
- Involve structural engineer and other key consultants
- Follow requested procedure and information for submittals
- o Clearly identify documents requiring approval
- Provide sufficient reference CDs for reviewer information

Lessons Learned: Partnering Session

19

• Who

- Owner / Key End Users
- Contractor
- Designers
- o IOR

• What

- Understand Each Other's Interest
- Agreed upon Rules of Engagement
 - × Establish Chain of Command
 - × Establish Forms of Communication
 - × Establish Decision & Approval Process

Lessons Learned: Influence

20

• District Able to Influence

- o Design Builder Relationship
- o Alignment of Scope with Stipulated Sum
- Initial Schedule
- Effective Qualification Process
- Extent & Depth of Control Bridging Documents

• District Challenged to Influence & Control

- o Dynamics of DSA Process
- o Construction Schedule
- Changing Market Conditions
- Constituents
- o Owner / End User Scope Creep

• No Influence

- Weather
- Materials Cost

Lessons Learned: Architect

- A complete set of bridging documents is important for establishing scope, budget and limit of work
- More disclosure of project costs throughout the process is helpful to ensure best value
- Additive alternates should be developed early on in the design process and documented to address potential escalation and de-escalation issues
- Consistency in partnering agreements throughout the process
- Clear, consistent direction from the client regarding programming and committee input

- Complete performance and quality criteria program
 - Equal level of detail for all elements of program
 - Define the functional relationships of user groups
 - Define the adjacency relationships of user groups
 - Define materials, systems and quality criteria
 - × District Standards

23

• Perform comprehensive evaluation of existing conditions. Don't use historical data.

- o Soils
- o Civil
- Infrastructure
- Hazardous Materials
- Impact of dotted line
 - Project boundaries

• Provide Owner Representative with Responsibility and Authority

Negotiate between and manage user groups
Differentiate between user wishes and needs.

• Implementation of change after selection

- Scope change is disruptive to flow of team
- Just as in Design-Bid-Build, additive and deductive changes will result in DBE administrative and design costs in addition to the hard costs. (DB is not a pass to continuously design and redesign.)

25

- Bundle "like projects" into a single program to take advantage of economies of scale
 - Reduce the waste of multiple teams repeating learning and mistakes
 - Multiple DSA permit applications allow response to college planning, design processes and construction sequencing
 - Allows flexibility in delivery and leveling of resources to reduce cost and schedule

Lessons Learned: General Contractor

26

- Early on, define the end users that will be decision makers
- Do not assume that the other team members know what aspects of the job are most important to your organization
 - Owner/Architect design feature is crown jewel
 - Contractor may see same item as prime opportunity for VE
 - Open and continuous communication
- Engage the team early in the process (owner/end users/designers/builders)
- Collaboration during the entire process sets the tone for the entire project
- Include a section in the RFP that allows the DBE to either add scope or deduct scope to conform to the stipulated sum
- Do not require more RFP deliverables than the owner needs to make a selection
- Set interim design milestones, and track diligently
- Take great care of your owner!

Lessons Learned: General Contractor

- Designing in BIM on a very aggressive schedule may require a concurrent 2D path for estimating and contracting.
- The DBE Team needs to read and edit specifications carefully before issuing to the owner.
- Ensure adequate time for stakeholder input.
- Conduct preliminary review meetings with the regulatory agencies (DSA, etc.).

Lessons Learned: Not a Panacea

28

- Owner Sophistication
- Owner Indecision
- Dynamics of an Occupied Campus
- Construction Schedule Inflexibility
 - Academic Constraints
 - Weather Constraints
- Interpersonal Dynamics
- Market Conditions

Summary

29

• Design Build is working

- o Partner / Team Approach
- Management of Constituent & DBE Expectations

• Communicate, Communicate, Communicate

- o Owner / End User
- Contractor
- Designer
- o IOR
- Permitting Agencies

Future Projects 2012-2013

30

- CAN 1 Fitness Center & Aquatics \$30M
 Demolition & New Construction
- CSM 8 Fitness Center \$25M
 - Demolition & New Construction
- DW Athletics Field Replacement \$6M

Question & Answer

31

WWW.SMCCD.EDU/FACILITIES

JOSÉ D. NUÑEZ, LEED AP VICE CHANCELLOR FACILITIES PLANNING, MAINTENANCE & OPERATIONS

(650) 574-6512 NUNEZJ@SMCCD.EDU